Please visit our sponsors by clicking on banner.

Please visit our sponsors:

<< First  < Prev   1   2   3   4   5   ...   Next >  Last >> 
  • 08 Aug 2019 8:22 PM | Annmarie Uliano (Administrator)

    by Teresa Jurgens-Kowal, PhD, PE, CPEM, PMP®, NPDP

    Engineers and engineering managers have spent a lifetime of knowing the right answers. I always took pride in school at being the kid with a 110% score on the test – not only did I answer all the questions correctly, but I also did the extra credit right.

    Education to become an engineer and engineering manager is tough. We watch as friends drop out of engineering programs and we carry on – studying and grappling with complex topics like thermodynamics, kinetics, and dynamic motion. By the time we get settled into a job, our experience teaches that we are right more often than not. Moreover, it seems that people come to us for help and to get their questions answered.

    Yet, as stubborn as I am, I know that I cannot be the best engineer or manager I can be without help. Many recent studies demonstrate that managers and executives who ask questions are perceived as better leaders than those who do not. Our goal as engineering managers is to lead and guide our teams so that we collectively produce the best results for our companies, our customers, and ourselves.


    Formal mentoring programs usually put the burden on the mentee, and you may need to ask for a new mentor if you are not getting the responses you expect. A lot of times, formal mentoring programs assign people randomly to the mentor/mentee pairing and you may not feel a social or personal connection to your mentor 

    In my own career, I benefited from several informal mentors. One mentor was my direct supervisor who helped me to learn a new technology and trusted me with larger scale projects during my assignment. His philosophy was that it was better to do something and apologize later rather than to do nothing at all. To this day, I rely on advice I learned from him.


    As you climb the ranks in an engineering organization or in any business, you may want to have a coach. Business coaches can help a manager navigate all kinds of situations. But, beware, coaching is tough and personal. You have to do the hard work to learn and improve your performance to get to the next level.

    Coaches, like mentors, can also help an engineering manager build skills. Say you don't like doing presentations. A coach can help you learn skills and become confident at presenting. You should trust coaches based on their experience and with a personal match of style.

    Other coaches can help you through the business processes of an organization. I have recently been coaching an entrepreneur who is developing a smartphone application. Normally IT people (like engineers) adopt a technology, build a product, and then hope it will sell in the marketplace. We have worked, systematically, to set up his product for success by first talking to customers. This has allowed him to understand the product requirements before spending time and money building the product. Coaches can offer advice based on their own experience and the experiences of others they have worked with over the years.

    Master Mind Groups

    Master mind groups are sometimes known as peer coaching. In a master mind group, individuals commit to both giving and receiving help. What's different from a mentor or coach relationship is that participants have a larger set of experiences from which to draw.

    A typical master mind group session is facilitated by an expert who also might be a mentor, coach, or other leader. The master mind members are drawn by a common interest - innovation, engineering, or even cooking. Each session starts with a celebration of goals met by the master mind members since the last meeting. Then, each person puts forth a question or problem that is facing them. Other master mind group members brainstorm solutions in a fast-paced discussion. Finally, the mastermind session closes with each member committing to one goal for the next meeting. Usually, this objective is based on the group brain storming discussion.

    Benefits of master mind groups include providing a free, open, and confidential environment to discuss ideas; accountability; and an opportunity to share your own experiences and knowledge.

    Asking for Help

    It's hard for engineering managers to ask for help. If you're like me, you like to know answers rather than show vulnerability. I hate when I must turn on the GPS instead of knowing the route ahead of time! Yet, I've also learned that the GPS can navigate a quicker route or help me to avoid traffic jams.

    Engineers and engineering managers can use other people in their company and with organizations like ASEM to navigate career challenges, learn new skills, and build their toolkits with knowledge and experience. Ways to improve your performance as an engineering manager include mentoring, coaching, and master mind groups

    Please join me for a complimentary Innovation Master Mind Q&A webinar on 22 August at 12 noon CDT to learn more about both asking for and receiving help.

    What step will you take to ask for help and to advance your career?

    About the Author

    Teresa Jurgens-Kowal, PhD, PE (State of Louisiana), CPEM, PMP®, NPDP, is a passionate lifelong learner. She enjoys helping individuals and companies improve their innovation programs and loves scrapbooking. You can learn more about Teresa and her new Innovation MasterMind group by connecting on LinkedIn or visiting her consulting business' website: Global NP Solutions, LLC.

  • 05 Aug 2019 7:54 PM | Annmarie Uliano (Administrator)

    Leading Transformation by Nathan Furr, Kyle Nel, and Thomas Zoëga Ramsøy.
    Harvard Business Review Press: Boston, MA (2018). 243 pages.
    US$32.00 (hard cover).

    As engineers and engineering managers, we are asked to create and implement a variety of changes. Some of these changes improve processes, making them run more efficiently and with higher yields. Other changes are introduced to generate more sales or enhanced customer relationships.

    Of course, change is hard. If only we could reprogram people as easily as we reprogram computers. The new book, “Leading Transformation,” by Nathan Furr, Kyle Nel, and Thomas Zoëga Ramsøy provides guidance on how to create radical change within an organization. The book is based on neuroscience research and experiences of the authors that have led to positive change benefitting companies and consumers. The book is “about taking charge of your future” (pg. 19).

    A Learning Model

    The authors present a learning model for behavioral transformation (pg. 13) that starts with a strategic narrative. Once a future vision is in place, the change agent must break organizational bottlenecks, and then validate effectiveness of the change with key performance indicators (KPIs). These future KPIs refine the future strategic narrative and the transformational learning cycle repeats.

    A key concept in transformation is introducing and accepting disruption. Most organizations end up generating new ideas or implementing change initiatives on very small scales. Risk aversion is a natural response to avoid failure or potential loss of revenue. Yet, taking calculated and scaled risks is what allows a company to create radical change.

    Transforming Your Organization

    Chapter 5 of “Leading Transformation” discusses how each of us can create transformational change.

    • Take the opportunity to explore
    • Lead from the bottom-up
    • Select team members with willingness to ideate, experiment, and fail
    • Accelerate your project with proper skills
    • Adopt uncommon partners
    • Create an engaging future narrative
    • Demonstrate results
    • Resist the resistors
    • Capitalize on supportive proponents
    • Work agilely

    The Lowe’s Example

    Throughout “Leading Transformation,” the authors weave their theory of transformational change with a story of disruption at Lowe’s, a home improvement retailer. Lowe’s held a secondary market position to competitors for years and growth by expansion was maximized. It needed transformational, radical change to grow.

    To create a strategic narrative, the change management team gathered market trends and customer inputs. This information was then handed to science fiction writers. These industry outsiders, without the constraints of risks or budgets, generated several ideas to position Lowe’s as the retailer of the future.

    This strategic narrative was summarized in a comic book for presentation to the executive board. Clearly, the change team was taking risks with such a radical change in presentation style and their initial efforts were met with doubt and more than a few raised eyebrows.

    The authors argue that comic books are excellent presentation tools for transformative change. There is a complete story present with both winners and losers. The format is visual but easily consumed. Comic books allow complex and futuristic ideas to be presented in a condensed manner and demonstrate – graphically – a future vision (Chapter 2).

    Once the senior executives of Lowe’s adopted the future vision (from the comic books), the team was faced with a challenge that all of us face when introducing change: resistance. Even with senior management, the organization resisted change. Again, most of us prefer stability and predictability over change.

    So, the Lowe’s change management team started small, got buy-in, and demonstrated successes. One of the key ideas generated in the future vision was using AR (augmented reality) to help homeowners envision their home improvement projects. The Lowe’s team started with a few tests, using QR codes for consumers to scan and “see” a home improvement project on their phones. Later, they tested various AR and VR (virtual reality) systems with much of their experimentation ahead of Google and Microsoft.

    The authors applied neuroscience studies on top of the hardware prototypes to get in-depth customer feedback. They learned, for instance, that people prefer AR over VR, and less realistic simulations. When the simulation is too real, it’s “creepy” for users.

    Each small experiment led to organizational and technical knowledge to advance the transformation. Equally important was the generation of “future KPIs”. These measurements and artifacts demonstrated small wins. With each incremental development step, the team realized decreased resistance.

    Lowe’s won several awards for implementing advanced technology and gained market share with its novel ideas. The unique approach to radical transformation over incremental product and service development catapulted the company to first in its category.


    Leading change is always challenging. “Leading Transformation” gives several unique approaches, based on experience, to guide engineers and engineering managers in creating disruptive transformation. Though the Lowe’s example was highlighted, the authors give other industrial examples and case studies of successful change built on neuroscience. Finally, they present (Appendix C) a comic book summary of the whole book – putting into practice their own theories.

    What resistance do you face in creating transformational organization change?

    About the Author

    Teresa Jurgens-Kowal, PhD, PE (State of Louisiana), CPEM, PMP®, NPDP, is a passionate lifelong learner. She enjoys helping individuals and companies improve their innovation programs and loves scrapbooking. You can learn more about Teresa and her new Innovation MasterMind group by connecting on LinkedIn or visiting her consulting business website: Global NP Solutions, LLC.

  • 28 Jul 2019 11:52 AM | Annmarie Uliano (Administrator)

    by Atul Kalia

    Google the phrase “High Performance Teams” and you will find 534,000 results - articles, books and other “expert” opinions.

    I had the opportunity to interact with 11 engineering leaders last month. This was during a 5 day engineering management workshop that I lead for professionals from Automotive, Aerospace, Off-Highway and Heavy Truck industries.

    While covering the topic of High Performance Teams, I asked, “What has worked well for you in creating High Performance Teams?”

    Each leader provided 1 response. Their responses are captured in the image accompanying this article. Each response is also included in the body of this post, with a short text elaborating the tip. I felt their responses were at par or better than what most “experts” cite. Hence, I am sharing the responses from these practicing leaders in this article. So here they are:

    1. Give Team Credit
    2. Avoid Blame – Work on Solution
    3. Celebrate successes
    4. Work on tasks together outside of work
    5. Weekly learning sessions – presentations
    6. Filling in for others when out - Cross Training
    7. Charisma – Relationship building
    8. Schedule frequent face to face even when some team members may be remote. Call outside of work related calls
    9. Give and receive – Reciprocity
    10. Informal Information gathering
    11. Training/Learning – Professional Growth

    What tips can you share? What has worked well for you in building High Performance Teams?

    To read this article in its entirety, including details around each of the 11 tips, see:

    About the Author

    Atul Kalia is Professional Membership Director for ASEM. Atul is passionate about enabling success for individuals, teams and organizations. This success manifests itself as professional growth for individuals, successful delivery of complex programs by high performance teams, and sustainable profitability for organizations. Atul achieves this through coaching, competency development workshops, facilitation and consulting. He consults in new product development, organizational development, agile project management and continuous improvement.

    Atul led and coached many global teams during his corporate career of 20+ years, which successfully launched many complex and innovative programs. He held various positions of progressively increasing seniority during his corporate career and worked as the Director of Engineering for a Manufacturing firm before starting his own consulting firm, SN Group LLC.

  • 14 Jun 2019 5:26 PM | Annmarie Uliano (Administrator)

    by Don Kennedy, PhD, PMP, FASEM

    The Bhagavad Gita (or the "Song of God") is an ancient Hindu text that I do not claim to be an expert in. That said, it is my understanding that one of the lessons in the work is that "action is greater than inaction." I would like to use that concept to highlight some less than optimal behaviors I have seen in managers at all levels.

    First however, an example from school. I knew a person, I will call Dave, that had a major project due. The policy for the assignment was a 10% deduction from the mark for each day late. On the due date, Dave decided that he was not happy with the work and he did not want the professor to think that was his best work. He decided that it was better to lose 10% and take an extra day to polish it up.  It might actually get 10% more and make up for the deduction for being late. You can see where this is going until enough days passed that Dave decided that it was better to not hand in anything than to explain why he was handing in something so late that it could potentially be worth no marks anyway. At that point, I did ask Dave what he thought was better than handing in nothing? Handing in “anything!”

    I have an old Project Management textbook that says the most important trait of a good project manager is the desire to complete tasks.  I searched for such an expression in recent works and did not find that same clarity.

    Too many times I have seen managers paralyzed by the fear of making a decision that is not the best one. One startup company I was involved in went bankrupt even though the product sure seemed to be a winner but after expending a lot of resources to reach a certain point, the senior executives debated how to roll it out. They had a working concept but then 5 years passed without turning it into a commercially viable operation. Some of the executives said they only had one shot at doing it, so they had to make sure it was right. A fear of competition resulted in a lot of legal fees on patent protection and corporate structuring to mitigate the impact of claims resulting from some perceived risk events. Pushing the product out the door fast and making the competition play catch up had risks but the chance of success was greater than not ever producing anything. Some related side businesses of the proposed plan produced commodities that were at a peak in their demand and price cycle. In the years that nothing was accomplished the price of these products were near the cost of production and the venture lost much of its appeal during this time of lost opportunity. The company is currently only a shell trying to raise new capital to try again.

    In many supply-chain situations, extra lead time in ordering can create significant savings. To delay procurement due to a sense of insecurity in making a decision can change the plan to one of having to pay extra to expedite the purchase to meet the crashed schedule.

    Often the rewards of action far outweigh the risks of inaction. I offer this as something for you to consider.  

    About the Author

    Dr. Don Kennedy has been a regular attendee of the ASEM conference since 1999, with particularly good participation at the informal late evening "discussions" (sometimes making it difficult to get to the morning plenaries). He has spent much of his time working on large construction projects in remote areas, lecturing at a few universities, and recently had a go as Director of Engineering in R&D. More to come at the IAC Conference. Don Kennedy is the President of The International Engineers Conference on Ethics and a Fellow of ASEM.

  • 19 May 2019 10:17 AM | Annmarie Uliano (Administrator)

    by Alexis Devenin, MBA, PMP

    A program is understood as a group of related projects with common strategic objectives that must be managed in a coordinated way.  A project portfolio is defined as a group of high-level projects and programs with the focus of sustaining the strategy of a company. It is understood that the stakeholder of a project portfolio is the top management of the company.

    There is a great number of project managers that must lead a group of projects from different stakeholders of their organizations. They have to manage a “portfolio,” not of high-level projects, but rather to address organizational requirements arising from different stakeholders and to cover different kinds of problems or opportunities. For instance, in an industrial plant, these projects can consist of replacement of old equipment, automation, safety improvement, machine monitoring, equipment modification to meet environmental standards, or to eliminate repetitive failures, energy efficiency improvements, etc. These multiple projects may not have been originated from top management or inspired by the company strategy or vision, but they have appeared by “spontaneous generation” at different levels and in different production units. As a group, they can be called “multi-project” instead of referred to as a “project portfolio” because they are not necessarily related to strategy, but instead, they correspond to local and punctual requirements.

    The Project Management Institute (PMI) has dedicated standards and a certification for program management and for portfolio management. “Multi-project management” has not reached the same status as their fancy relatives “program management” or “portfolio management,” but multi-project management is the scenario in which a lot of project managers have to work.

    Typically, the projects come from different production lines of the plant, or from different plants of the company, or from different units of the organization. In the same way that similar organisms have similar needs, similar units usually have similar requirements. It is convenient to identify a group of projects with similar contents or objectives and manage them as a project program.

    Identifying similar projects and treating them as a program has several advantages. You can develop a pilot solution in one of the plants and then fine tune the solution for the next one. Once you arrive at a satisfactory solution, you can standardize the solution for the group of plants. Finally, grouping projects puts you in a good position to negotiate with contractors for better conditions. 

    Programs not only can arise from high-level management, but they can emerge naturally from requirements at the operational level.

    About the Author

    Alexis Devenin is a Mechanical Engineer with his MBA and PMP certification. He is an Engineering Project Manager with 20 years of experience in the Steel, Mining and Renewable Energy industries. Connect with him at:

  • 18 May 2019 2:14 PM | Annmarie Uliano (Administrator)

    Build an A Team by Whitney Johnson.  Harvard Business Review Press:  Boston, MA (2018).  194 pages.  US$28.00 (hard cover). 

    Whether you are designated supervisor or manager, most engineers find themselves in a position of leadership.  We lead project teams to accomplish specific goals, and we lead R&D teams to explore new scientific frontiers.  Moreover, we are all part of teams striving to grow and sustain the organizations where we work.

    Whitney Johnson’s recent book, “Build an A Team,” is a short text that teaches us about assembling the right mixture of knowledge and expertise on a team.  She also informs us how to better lead and motivate team members with wide variations in skills and experience.

    Learning S-Curves

    S-curves are common throughout the technological and business worlds.  At an early time, the curve has a low value but as time goes on, the slope increases steeply.  And near the end of the time period, the curve will again level out.  Sales of new products and technical advances in science follow S-curves.  And as Johnson illustrates in “Build an A Team,” learning also follows an S-curve.  At the beginning of a job assignment, we are often inexperienced.  But, as we become familiar with the organization and performance expectations, our learning engagement rises steeply.  Then, as we gain mastery and experience in conducting the job’s required tasks and activities, our learning levels out to a slow pace.

    Because you wouldn’t want to have a team completely composed of novices or of experts, the author recommends an ideal team composition based on the learning S-curve.  She advises that effective teams have about 15% at the low-end, 15% at the high-end, and the remaining 70% in the middle.  The team can be highly productive since newbies are typically at the low-end of the learning curve for about six months while engaged and growing team members (in the middle) need three to four years to build expertise.  People at the top of the curve should be coached and mentored into new positions where they can start a new learning curve to sustain engagement and motivation.

    Accelerating Learning

    While each person proceeds through an individual learning curve at his or her own pace, leaders can accelerate a team’s learning curve.  Johnson offers seven tips to help managers support team learning (Chapter 2).
    1. Become a talent developer.
    2. Pinpoint employees’ talents and utilize them.
    3. Use time limits to motivate and hone focus.
    4. Celebrate success and be generous in helping employees fulfill their potential.
    5. Sacrifice short-term productivity to encourage curve-jumping.
    6. Let employees take on uncomfortable challenges and support them through failures.
    7. Shift players on your team as their skills and talents emerge.

    Managing the Team

    Recruiting and hiring (Chapter 3) should focus on motivation and purpose as much as acquiring given skills.  People can be taught functional skills but fit with purpose and goal-orientation are intrinsic characteristics.  I emphasize this point in the Virtual Team Model [1] as well.

    New hires at the low-end of the learning curve need support to build their internal networks (Chapter 4).  Job rotations are often used in engineering and operations companies for mutual exposure among people and functions.  Make sure you set short-term, achievable performance goals for new hires too.

    As team members build technical and leadership skills, give them assignments that continue to capitalize on their strengths (Chapter 5).  Push these mid-level learning employees to greater investment of effort or ask them to accelerate results.  These team members are confident in their abilities but often need a push to independently practice skills (pg. 113).

    Finally, the experts who have repeatedly demonstrated mastery are at risk of becoming bored and leaving your organization.  You’ll need to motivate experts to become internal pacesetters and leaders, trainers, and/or mentors (Chapter 6).  These activities usually require new skills so the master is jumping to a new learning curve where s/he will again be motivated to learn and grow.


    Less than a quarter of people feel like they have a clear career path (pg. 4).  Engineering managers are in a unique position to help team members and employees accelerate their own development.  Understanding the various stages of learning, as described by Whitney Johnson in “Build an A Team,” can help us to become better leaders.  Ultimately, our improved leadership as engineering managers leads to better performance for our teams and organizations.

    How would you assess the learning levels of your current engineering team?

    Works Cited

    [1] T. Jurgens-Kowal and D. Hardenbrook, "Bridging Communication Gaps in Virtual Teams," in Leveraging Constraints for Innovation, PDMA New Product Development Essentials, Volume 3, Hoboken, NJ: Wiley, 2018, pp. 95-117.

    About the Author

    Teresa Jurgens-Kowal, PE, CPEM, PMP®, NPDP, is a passionate lifelong learner. She enjoys helping individuals and companies improve their innovation programs and loves scrapbooking. You can learn more about Teresa and her new Innovation MasterMind group by connecting on LinkedIn.

  • 16 May 2019 8:39 AM | Annmarie Uliano (Administrator)

    by Teresa Jurgens-Kowal, PE, CPEM, PMP®, NPDP

    Innovation is key to success in all businesses today.  Global competition is driving a faster pace of technology development, and consumers require updated and integrated access to products and services.  Yet, innovation often remains an elusive goal for many engineers. 

    Engineering managers are on the frontline to encourage creativity and innovation.  While we must always place safety as a first priority, we can adopt testing, prototyping, and variation as tools to improve product and process performance.  Building effective, balanced innovation teams is the first step to long-term, sustainable success. 

    Innovation Team Member Profiles

    A team is generally composed of several engineers with different levels of experience and various skill sets.  Such diversity in education and knowledge can lead to more creative problem-solving, but only when the diversity does not lead to conflict.  Understanding the work styles of your team and how to mold the team for productivity is the responsibility of the innovative engineering manager. 


    Creators are team members who love the hunt for new ideas.  They are eager to “bounce around ideas and concepts,” and they enjoy thinking in the abstract.  They love brainstorming sessions and are very arisk-tolerant.  If an experiment doesn't work out, then they are ready to move on to the next one.  Generating a lot of options and alternatives is very energizing to a creator. 


    At the opposite end of the spectrum are executors.  These team members like stability and predictability.  Once the plan is written, an executor will follow the steps exactly.  Executors prefer concrete thinking to the abstract and will often jump immediately to solution-generation.  They are energized by systems and procedures, enjoying implementing projects with specific and detailed checklists, for example. 


    While creators and executors sit at opposite ends of the opportunity spectrum, refiners and advancers view communication and relationships as the primary lens for teamwork.  A refiner enjoys analysis and will mold and shape project data to draw objective conclusions.  Refiners may prefer to work alone and assume that all solutions must be based on logic.  Ideas that are impractical are not necessary to study from a refiner's perspective; but, if the existing data supports a solution to the problem, a refiner will design an accurate response. 


    Further, while the refiner believes the data speaks for itself, advancers relish building relationships to sell and promote an idea.  Emotional linkage to a product or process solution is engaging for an advancer to develop.  They act us “cheerleaders” for projects and can get others  excited about it.  Advancers are energized by interactions with potential customers and senior management because they are excited to promote answers to solve problems. 

    Potential Team Conflicts

    Engineering leaders need to manage personality conflicts yet can encourage diverse technical discussions to drive toward a better solution.  Creators may find frustration with the slow, methodical work of an executor.  An innovation team can thrive by letting creators have free reign at the beginning of a project but transferring standardized implementation to the executors later in the project life cycle. 

    Likewise, refiners may be frustrated with the exuberance of an advancer, who in turn believes in the emotional value of a solution.  Advancers will find the pace of work of a refiner slow and may not understand their need for isolation.  Each team members’ preferred work style could lead to a conflict, but a successful innovation manager will instead use these differences to build strength on the team.

    Using the Work Styles for Strength

    Using your team’s work styles for strength can benefit an innovation project.  In addition to leaning on creators in the idea generation stage of a project, an engineering manager can use advancers to gauge qualitative feedback.  A refiner can work with executors on the team to design specific quantitative measures to validate the early concepts.  When trouble hits a project schedule or budget, as it inevitably does, the varied work styles of an innovation team will allow team members to collaborate, brainstorm, test, design, and evaluate novel solutions.  Your executors will ensure that the project gets completed according to these specifications.

    Engineering managers must assess the various work styles of their innovation team members to build on their strengths.  Engaging in open communication regarding work style preferences and differences can lead to more productive and efficient team relationships.  And in turn, this leads to better and faster product and process development. 

    How will you use different work styles on your team to create novel and innovative solutions?

    About the Author

    Teresa Jurgens-Kowal, PE, CPEM, PMP®, NPDP, is a passionate lifelong learner. She enjoys helping individuals and companies improve their innovation programs and loves scrapbooking. You can learn more about Teresa and her new Innovation MasterMind group by connecting on LinkedIn.

  • 01 May 2019 11:00 AM | Annmarie Uliano (Administrator)

    Happy Spring! Carpets of lush green and beautiful flowers abound and it is a time of exciting promise for many as they consider new challenges and opportunities! ASEM is no different and we also rejoice in the accomplishments of our members, plus the chance to take our next steps as engineering management professionals. I’m delighted to share details on the 2019 IAC in this newsletter, along with opportunities to celebrate each other through society awards. Please consider nominating a worthy colleague or program for one of the awards listed below. Also, we have very exciting news about the trademark application for our CAEM/CPEM professional certification. We are in the home stretch and so excited! It has been a journey supported by many and we are so grateful to all for their hard work. Engineering Management is a vibrant, ever evolving field and it is a great time to be part of the exciting promise that ASEM brings to its members.

    In friendship,


  • 04 Apr 2019 1:07 PM | Annmarie Uliano (Administrator)

    The ASEM Board of Directors just held its Spring meeting at the 2019 IAC venue and we are all in for a treat at the next conference! This conference space will be very different from the 2018 meeting in Idaho, but every bit as vibrant in its own way. The conference will be housed in a bustling neighborhood with many excellent dining choices nearby. Some of the most historic sites of the early history of the US are housed just a short distance away. It will be another world-class meeting.

    Beginning in the April eNews, we plan to invite multiple guest columnists to help get the buzz going around the conference and the local industry. We hope you’ll enjoy this change of pace!

    Best, Suzie

  • 29 Mar 2019 12:00 PM | Annmarie Uliano (Administrator)

    Photo by Nik MacMillan on Unsplash

    In this final installment on the Engineering Management Body of Knowledge (EMBoK) blog series, we take a look at professional codes of conduct and ethics. I share an overview of what ethics is, some of the important concepts surrounding ethics, and why ethics is so important to our work as engineers and managers.

    What is Ethics?

    Ethics relates to the set of values and morals that are accepted as good and desirable by society or an individual. When a person’s behavior or character is deemed good or virtuous, regardless of the pressures put on them to act otherwise, they are regarded as ethical.

    Stakeholders and Ethics

    Stakeholders are the groups and individuals who may be affected by, directly or indirectly, what an engineering manager or organization does and the decisions they make. A typical organization may have stockholders, employees, suppliers, customers, and communities as their stakeholders. Ethical decision-making on the part of engineering managers requires consideration of how decisions will affect all relevant stakeholders. 

    Ethical Theories

    Ethical theories are useful because they provide a framework for use in decision-making. There are two broad groups of ethical theories considered in the EMBoK: conduct theories and character theories.

    Conduct theories are concerned with the actions a person takes and what the underlying motivation is for taking them. These theories range from the altruistic to the self-centered. On one end, a person’s ethics lead them to act in ways that benefit others. On the other end of the spectrum, a person’s ethics can lead them to “look out for number one” and make decisions that benefit themselves at the expense of others.

    Character theories, on the other hand, are concerned with a person’s character and virtues. These theories do not suggest explicit ways of acting; rather, they suggest ways of being such that ethical behavior will naturally result. Virtues like courage, honestly, and justice are promoted in these theories.

    Ethical Decision-Making

    There is no one process or flow chart to guide an engineering manager towards making ethical decisions. However, there are practical tools and models that can be used to help. For example, the utilitarian model mentioned above could be used to help a manager determine which decision could be made that would result in the greatest good for the greatest number of people.

    With each model, however, there are pitfalls that need to be understood and mitigated. In the utilitarian model, it can be difficult to measure benefits and harms for each stakeholder group, and to rank the order the importance of those groups.

    The EMBoK also offers a series of practical questions that engineering managers can ask themselves when faced with ethical decisions. Questions like “What would my mother think of my decision?” are simple, but can be very useful in cutting through the complexity of a given situation and get to the heart of whether a given decision is ethical.

    Professional Codes of Conduct

    Our profession demands ethical behavior from its members, especially those in management and leadership roles. As a result of recent major scandals in the corporate world, such as the Enron scandal, many have lost faith in the business community. Furthermore, the nature of our work as engineers is such that the public’s well-being is often implicated in the decisions we make. Therefore, maintaining a high ethical standard for ourselves is of critical importance.

    One challenge in behaving ethically in any given organization is lack of clarity on what constitutes ethical behavior. To address this, high-performing organizations develop clear, robust codes of conduct and train their staff to understand and apply those codes. Additionally, professional associations like the National Society of Professional Engineers create and promote codes of ethics that have broad applicability in many different industries and situations. Engineering managers and leaders can rely on these codes to help guide them in managing the difficult situations they face in the workplace.


    Ethics and ethical decision-making are likely not at the forefront of most engineering managers’ minds in the course of a week. However, it is all but certain that, at some point in your career, you will be faced with an ethical dilemma. Being able to recognize a situation as such, and understanding the tools you have at your disposal for managing that dilemma can go a very long way toward resolving your challenge in an ethical way.

    About Patrick Sweet

    Patrick Sweet, P.Eng., MBA, ASEP is a recognized expert in engineering management and leadership. His mission is to create a better world through high-performing engineering organizations. You can read more from Pat at the Engineering & Leadership blog.

<< First  < Prev   1   2   3   4   5   ...   Next >  Last >> 


      Proud to have these Sponsors/Members

Powered by Wild Apricot Membership Software